
The 2021 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM21)
GECE, Seoul, Korea, August 23-26, 2021

  

 

 
 

 
On flow laws and constitutive relations in  

non-smooth elastoplasticity 
 

*Fabio De Angelis1) and Simona De Cicco2) 
 

1), 2) Department of Structures for Engineering and Architecture,  

University of Naples Federico II, 80125 Naples, Italy 
1) fabio.deangelis@unina.it 

 
 
 

ABSTRACT 
 

     In the present paper a formulation of flow laws and constitutive relations in non-
smooth elastoplasticity is presented. The treatment refers to general non-smooth 
elastoplasticity problems and to problems characterized by non-smooth yield criteria 
and non-differentiable functions. The mathematical tools of subdifferential calculus are 
suitably adopted in order to supply proper mathematical instruments able to deal with 
non-smooth problems and non-differentiable functions. Generalized formulations of flow 
laws and loading/unloading conditions in non-smooth elastoplasticity are derived and 
presented within the mentioned theoretical framework. Connections between the 
proposed mathematical treatment and the classical relations in elastoplasticity are 
illustrated and discussed. The presented treatment is endowed with considerable 
advantages since it is well suited for the development of variational formulations and 
computational algorithms for structural problems in non-smooth elastoplasticity.  
 
1. INTRODUCTION 
 
     In elastoplasticity the use of non-differentiable functions is required for the nature 
of the model problem which is characterized by loading/unloading conditions and 
singularities in the yield surfaces. The use of multivalued operators and non-
differentiable functions leads to a non-standard treatment of typically non-smooth 
multisurface plasticity problems, for an analytical point of view see e.g. Koiter (1953), 
Koiter (1960) and Mandel (1965), and for a numerical point of view among others see 
e.g. Simo et al. (1988), Alfano et al (2001), De Angelis and Cancellara (2017) and De 
Angelis and Taylor (2015, 2016).  In the present paper the evolutive elastoplasticity 
problem is formulated by adopting the tools and concepts of subdifferential calculus 
which is characterized by the necessary features for treating typically non-smooth 
problems. In generalized elastoplasticity the appropriate mathematical tools for 
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describing constitutive relations among state and associated variables are those of 
subdifferential calculus, see e.g. Rockafellar (1970), Hiriart-Urruty and Lemarechal 
(1993) and Moreau (1973). Consequently in the present paper generalized 
elastoplastic constitutive relations and plasticity laws are illustrated and discussed in 
detail within the adopted mathematical framework. The presented generalized 
framework also shows to be appropriate from a variational point of view, since it can be 
illustrated that this approach is convenient and advantageous also for the development 
of variational formulations of structural problems in elastoplasticity.  
 
2. THE CONTINUUM MODEL WITH INTERNAL VARIABLES 
 

     Let us consider a body B in the reference configuration ΩRn, with 1≤ n ≤ 3. Let T 

 R+ be the time interval of interest, V the space of displacements, D the strain space 
and S the dual stress space. The displacement is denoted by u: Ω x T →V and the 

stress tensor by  : ΩT →S. The strain tensor compatible with u is denoted by  = su: 

Ω x T →D, where s is the symmetric part of the gradient. A small deformation theory is 
also assumed with quasi-static deformations, see e.g. Skrzypek and Hetnarski (1993), 
Duvaut and Lions (1992) and Lemaitre and Chaboche (1990). An elastic material 
behavior is considered with the convex conjugate potentials representing the elastic 
energy W : D→R and the complementary elastic energy W* : S→R. In linear elasticity 
they are expressed as  
 

                  W(e)=½ <Ce,e>,     W*()=½ <,C-1>,                   (1) 
 

where e is the elastic strain, <·,·> indicates a non-degenerate bilinear form acting on 
dual spaces and C denotes the elastic stiffness. The relations  
 

                       =dW(e),       e=dW*()                           (2) 
 
or equivalently  
 

                           W(e)+W*()=<, e>                             (3) 
 

apply to conjugate pairs {, e} satisfying the elastic constitutive relation. We also 

express the plastic strain with p =  - e. In elastoplasticity with hardening behavior we 
introduce a dual pair of kinematic internal variables  
 

                           α=(αkin, αiso) ϵ X*=XR                            (4) 
 
and static internal variables  
 

                           χ=(χkin, χiso) ϵ X’*=X’R,                          (5) 
 
where αiso ϵ R and χiso ϵ R represent isotropic hardening behavior, and αkin ϵ X and χkin ϵ 
X’ represent kinematic hardening behavior, X and X’ being dual spaces.   
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We now introduce the hardening potential H(α) and its conjugate complementary 
hardening potential H*(χ). The relations  
 
                        χ=dH(α),      α=dH*(χ)                           (6) 
 
or equivalently 
 
                           H(α)+ H*(χ)=<χ, α>                            (7) 
 
apply to conjugate pairs {χ, α}.  
The hardening potentials are assumed to be expressed in decoupled form and for 
linear hardening they are represented by  
 
                        H(α)=½ Hkinαkin·αkin+½ Hisoαiso

2                       (8) 
 
and  
 
                       H*(χ)=½ χkin·Hkin

-1χkin+½ Hiso
-1χiso

2,                     (9) 
 
resulting χkin=Hkinαkin and χiso=Hisoαiso, and where Hkin and Hiso respectively represent 
the kinematic and isotropic hardening moduli. The static and kinematic internal 
variables are related by the equation χ=Hα, where H=diag [Hkin, Hiso] is the hardening 
matrix. For a comparative analysis of linear and nonlinear kinematic hardening rules in 
elastoplasticity see e.g. De Angelis (2012a).   

The elastic domain Ʃ is introduced by means of a convex yield function f(, χ), such 
that  
 

                          Ʃ ={(,χ) ϵ SX’*:  f(,χ) ≤ 0}.                     (10) 
 
Accordingly the convex sets  
 

                          Ʃ = { ϵ S :  (, χ)  Ʃ}                          (11) 
 
and  
 

                          Ʃχ = {χ ϵ X’*:  (, χ)  Ʃ}                         (12) 
 

represent the sections of the elastic domain at constant χ and at constant .  
For the treatment of elastoplasticity with internal variables we consider the generalized 
standard material model introduced by Halphen and Nguyen (1975), where strains and 
kinematic internal variables, as well as stress and static internal variables, are gathered 

in suitably defined generalized variables. The generalized strain is represented by *= (, 

0), the generalized elastic and plastic strains are represented by e*= (e, α) and p*= (p, 

-α) and the generalized stress is represented by *=(, χ). The duality products 
between generalized variables are therefore expressed by  
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                 <*, *> = <, >,  <*, e*> = <, e> + <χ, α>               (13) 
 
and   
 

                        <*, p*> = <, p> - <χ, α>,                         (14) 
 
where the same symbols have been adopted for denoting duality products on different 
pairs of vector spaces.  
 
3. FLOW LAWS AND LOADING/UNLOADING CONDITIONS IN NON-SMOOTH 
ELASTOPLASTICITY 
 
The maximum plastic dissipation principle is formulated by, see e.g. Hill (1950),   
 
                        Dp(έp,-ά)=sup{<τ, έp>-<q, ά>},                       (15) 
                                (τ, q) ϵ Ʃ 
 

where (τ, q) denotes a generic generalized stress state, (, χ) denotes the generalized 
stress state at the solution and (έp, -ά) is the given generalized plastic strain rate. We 
can usefully consider the plasticity problem as a convex optimization problem and the 
optimality conditions of the optimization problem are usefully adopted in the sequel for 
deriving a consistent formulation of the plasticity laws, see e.g. De Angelis (2000, 
2007a, 2007b). For a comprehensive account see also De Angelis (2018) and De 
Angelis and Meola (2021).  
In a model of non-smooth elastoplasticity with internal variables the maximum plastic 
dissipation principle is equivalently formulated by  
 
                     Dp(έp, -ά)=sup{<τ, έp>-<q, ά> - UƩ(τ, q)},                 (16) 
                             (τ, q) ϵ S x X’* 
 

where UƩ(, χ) represents the indicator function of the convex elastic domain defined 
by, see e.g. Rockafellar (1970) and Hiriart-Urruty and Lemarechal (1993),   
 

                       UƩ(, χ)={0 if (, χ)Ʃ;  + if (, χ)Ʃ}.               (17) 
 
In non-smooth plasticity the evolutive laws are formulated by expressing that the 

generalized plastic flow belongs to the normal cone NƩ(, χ) to the elastic domain Ʃ at 

(, χ) and accordingly it is  
 

                          (έp, -ά)  NƩ(, χ).                               (18) 
 

We now observe that NƩ(, χ) coincides with the subdifferential of the indicator function 

to the convex elastic domain Ʃ at (, χ), and it results  
 

                          NƩ(, χ) = UƩ(, χ).                             (19) 
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Accordingly the evolutive law in elastoplasticity can be expressed equivalently in the 
subdifferential form  
 

                          (έp, -ά)  UƩ(, χ),                               (20) 
 
which is formulated in components by   
 

                           έp   UƩ (, χ)                                (21) 

                          - ά  χ UƩχ (, χ)                                (22) 
 
and they express respectively the flow law of the plastic strain and the evolutive law of 
the kinematic internal variables.  

We now introduce the conjugate UƩ*(έp, -ά) of the indicator function UƩ(, χ) as   
 
                 UƩ*(έp,-ά) = sup{<τ, έp>-<q, ά>-UƩ(τ, q)},                    (23) 
                           (τ, q) ϵ S x X’* 
 
which is equivalently expressed by   
 
                    UƩ*(έp, -ά) = sup {<τ, έp> - <q, ά>},                       (24) 
                             (τ, q) ϵ Ʃ 
 
and it coincides with the plastic dissipation, that is UƩ*(έp, -ά) = Dp (έp, -ά). The flow rule 
(20) is therefore expressed in the equivalent inverse subdifferential form   
 

                          (, χ)  UƩ*(έp, -ά),                              (25) 
 
and relations (20) and (25) can be formulated equivalently in the Fenchel’s form  
 

                   UƩ(, χ) + UƩ*(έp, -ά) = <, έp> - <χ, ά>.                    (26) 
 
The illustrated formulation for the evolutive laws in non-smooth elastoplasticity is useful 
since it shows to be capable to provide a complete variational formulation in plasticity 
and rate plasticity problems, see e.g. De Angelis (2000) and De Angelis and Cancellara 
(2017). A description of the consequences of different loading programs on the inelastic 
behavior of solid materials has been reported e.g. by De Angelis (2012b, 2013, 2015) 
and De Angelis et al. (2018).  
For a treatment of generalized evolutive laws in plasticity and viscoplasticity see e.g. 
De Angelis and Cancellara (2017), De Angelis (2018), De Angelis and Meola (2021). 
Such approach is also advantageous for the derivation of variational formulations which 
form the basis for the development of numerical algorithms in finite element 
applications, see e.g. Alfano et al. (2001) and De Angelis and Taylor (2015, 2016). 
Extension of the treatment to cases with different material models can be studied, see 
e.g. De Angelis and De Angelis (2021). Further extensions of this treatment can also be 
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investigated in order to include the behaviour of materials with voids see e.g. De Cicco 
and De Angelis (2020).  
 
 
4. CONCLUSIONS 
 
A formulation has been presented for a consistent derivation of generalized flow laws 
and constitutive relations in non-smooth elastoplasticity with internal variables. The 
formulation holds for non-smooth elastoplasticity and it is capable to treat problems 
characterized by non-smooth yield criteria and problems characterized by non-
differentiable functions such as the complementarity loading/unloading conditions. The 
proper mathematical tools of subdifferential calculus have been used since they supply 
the suitable mathematical instruments for dealing with non-smooth problems and non-
differentiable functions. Generalized formulations of flow laws and loading/unloading 
conditions have been illustrated within the mentioned mathematical treatment. 
Equivalent formulations of the evolutive equations and of the loading/unloading 
conditions have been described. Moreover, the presented generalized treatment shows 
to be advantageous also from the point of view of a variational formulation of the model 
problem, since it is capable to supply a consistent variational treatment for structural 
problems in elastoplasticity.  
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